O glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions.

نویسندگان

  • M D Roos
  • K Su
  • J R Baker
  • J E Kudlow
چکیده

The O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins is dynamic and abundant in the nucleus and cytosol. Several transcription factors, including Sp1, have been shown to contain this modification; however, the functional role of O-GlcNAc in these proteins has not been determined. In this paper we describe the use of the previously characterized glutamine-rich transactivation domain of Sp1 (B-c) as a model to investigate the role of O-GlcNAc in Sp1's transcriptionally relevant protein-to-protein interactions with the TATA-binding-protein-associated factor (TAF110) and holo-Sp1. When the model Sp1 peptide was overexpressed in primate cells, this 97-amino-acid domain of Sp1 was found to contain a dominant O-GlcNAc residue at high stoichiometry, which allowed the mapping and mutagenesis of this glycosylation site. In vitro interaction studies between this segment of Sp1 and Drosophila TAF110 or holo-Sp1 indicate that the O-GlcNAc modification functions to inhibit the largely hydrophobic interactions between these proteins. In HeLa cells, the mutation at the mapped glycosylation site was permissive for transcriptional activation. We propose the hypothesis that the removal of O-GlcNAc from an interaction domain can be a signal for protein association. O-GlcNAc may thereby prevent untimely and ectopic interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-glycosylation of Sp1 and transcriptional regulation of the calmodulin gene by insulin and glucagon.

Both insulin and glucagon stimulate steady-state levels of Sp1 transcription factor, but only insulin stimulates transcription of the calmodulin (CaM) gene in liver. Because O-glycosylation of Sp1 by O-linked N-acetylglucosamine (O-GlcNAc) is thought to regulate its ability to activate transcription, we assayed the levels of Sp1 with anti-Sp1 and anti-O-GlcNAc antibodies in Western blots by use...

متن کامل

O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability.

The posttranslational modification of eukaryotic intracellular proteins by O-linked N-acetylglucosamine (O-GlcNAc) monosaccharides is essential for cell viability, yet its precise functional roles are largely unknown. O-GlcNAc transferase utilizes UDP-GlcNAc, the end product of hexosamine biosynthesis, to catalyze this modification. The availability of UDP-GlcNAc correlates with glycosylation l...

متن کامل

Insulin stimulates and diabetes inhibits O-linked N-acetylglucosamine transferase and O-glycosylation of Sp1.

Insulin stimulates both the biosynthesis of transcription factor Sp1 and its O-linked N-acetylglucosaminylation (O-GlcNAcylation), which promotes nuclear localization of Sp1 and its ability to transactivate calmodulin (CaM) gene transcription. To investigate this further, we incubated H-411E liver cells with insulin (10,000 microU/ml) and quantified the subcellular distribution of O-GlcNAc tran...

متن کامل

Western blot data using two distinct anti-O-GlcNAc monoclonal antibodies showing unique glycosylation status on cellular proteins under 2-deoxy-d-glucose treatment

Protein modification by O-linked N-acetylglucosamine (O-GlcNAcylation) is one of the post transcriptional modifications occurring on cellular proteins. This paper provides a data set relating to the O-GlcNAcylation of cellular proteins detected by RL2 and CTD110.6 antibodies, which are commonly used for detection of protein O-GlcNAcylation, in 2-deoxy-d-glucose (2DG)-treated human teratocarcino...

متن کامل

Paradoxical regulation of Sp1 transcription factor by glucagon.

Insulin is a potent regulator of Sp1 transcription factor. To examine if glucagon, which usually antagonizes insulin, regulates Sp1, we assessed the levels of Sp1 by Western blotting from H-411E cells exposed to glucagon with or without insulin. Glucagon alone (1.5 x 10(-9) to 1.5 x 10(-5) M) stimulated Sp1 accumulation but inhibited insulin's (10,000 microU/ml) stimulatory effect on Sp1. We al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 1997